

Niemojewskiego 36 05-071 Sulejówek sem@sem.pl www.sem.pl 22 825 88 52 22 825 84 51

Interfejs analogowy

do wyświetlaczy cyfrowych

LDN-4/...-AN LDN-5/...-AN

zakresy pomiarowe: 0 - 10V; 0 - 20mA (4 - 20mA)

Załącznik do instrukcji obsługi wyświetlaczy cyfrowych

1. IFORMACJE OGÓLNE

- 1.1. Wstęp
- 1.2. Charakterystyka
- 1.3. Dane techniczne

2. INSTALACJA

- 2.1. Podłączenie przetworników pomiarowych
- 2.2. Konstrukcja i montaż
- 2.3. Komunikaty specjalne

5. HISTORIA MODYFIKACJI

Stosowana symbolika:

SYMBOL	OPIS		
\triangle	Ostrzeżenie o konieczności ścisłego stosowania informacji zawartych w dokumentacji dla zapewnienia bezpieczeństwa i pełnej funkcjonalności urządzenia.		
Ι	Informacje szczególnie przydatne przy instalacji i eksploatacji urządzenia.		

1. INFORMACJE OGÓLNE

1.1. Wstęp

Załącznik należy stosować razem z instrukcją obsługi wyświetlacza LDN odpowiadającą typowi obudowy.

1.2. Charakterystyka

Wyświetlacze cyfrowe o oznaczeniu LDN-...-AN są wyposażone w wejście analogowe.

Wyświetlacze te przeznaczone są do stosowania w przemysłowych systemach kontroli i sterowania, w których pełnią funkcję miernika programowalnego. 4 lub 5 pozycyjny odczyt pozwala na prezentację mierzonej wartości napięcia lub prądu stałego z możliwością przeskalowania wartości wyświetlanej. Wykonanie 4 cyfrowe LDN-4/... pozwala wyświetlać wartości z zakresu <-999;9999>, natomiast wykonanie 5 cyfrowe LDN-5/... wartości z zakresu <-9999;9999> Wyświetlacze mają możliwość ustawienia pozycji kropki dziesiętnej, stałej czasowej filtracji i zaokrąglania odczytu. Źródłem sygnału mogą być przetworniki wielkości fizycznych na standaryzowany sygnał napięciowy lub prądowy.

1.2. Dane techniczne

Tabela.1. Dane techniczne

L.p.	Parametr	Wartość	Jednostki	Uwagi
1.	zakres pomiarowy prądowy	020	mA DC	
2.	rezystancja wejściowa wejścia prądowego	100	Ω	
3.	zakres pomiarowy napięciowy	010	V DC	
4.	rezystancja wejściowa wejścia napięciowego	1.25	MΩ	
5.	dokładność pomiaru	+/- 0.3	% zakresu	
6.	rozdzielczość pomiaru	10	bitów	
7.	stała czasowa filtracji	0.01 – 5.12	S	

2. INSTALACJA

2.1. Podłączenie przetworników pomiarowych

ڬ Wyświetlacz LDN jest przeznaczony do stosowania w instalacjach o napięciu bezpiecznym.

Tabela. 2. Opis połączeń przetworników pomiarowych

l.p.	Oznaczenie na rys.	Rodzaj przetwornika	Uwagi
1	A	przetwornik 3-przewodowy 0-20mA lub 4-20mA	zasilany wspólnie z wyświetlaczem
2	В	przetwornik 2-przewodowy 0-20mA lub 4-20mA	zasilany wspólnie z wyświetlaczem
3	С	przetwornik 0-20mA lub 4-20mA	zasilany niezależnie
4	D	przetwornik 0-10V	

Rys.1. Przykładowe schematy połączeń przetworników pomiarowych.

Tabela. 3. Opis złącza w module kontrolera.

Nr	Nazwa zacisku	Opis
1	- zasilania	ujemny biegun zasilania
2	+ zasilania	dodatni biegun zasilania
3	GND	masa wejść pomiarowych
4	+ 20mA	wejście pomiarowe prądowe 0 (4) – 20mA
5	+10V	wejście pomiarowe napięciowe 0 - 10V

Rys.2. Widok złącza i przycisków programujących - moduł kontrolera

Rys.3. Widok złącza i przycisków programujących – obudowa tablicowa.

2.2. Obsługa nastaw programowania.

Wyświetlacze standardowe są dostarczane z nastawami domyślnymi. Przygotowanie wyświetlacza do pracy wymaga zaprogramowania przez użytkownika nastaw odpowiednich dla danego zastosowania.

Menu programowania jest wyświetlane na 4 najmniej znaczących cyfrach wyświetlacza, natomiast w wykonaniu 5 cyfrowym LDN-5/... skalowanie odbywa się na 5 pozycjach.

Tryb nastaw uruchamia się przełącznikiem **S3**. Nastawy wykonuje się programowo, przy pomocy 2 przycisków **S1, S2**. Komunikaty menu programowania są wyświetlane z dosunięciem prawostronnym. Parametry zgrupowane są w numerowanych funkcjach.

Funkcje przycisków są następujące:

- S1 ZMIANA zmiana wartości lub wyjście z aktualnej pozycji menu;
- S2 POTWIERDZENIE potwierdzenie wyświetlanej wartości lub wejście w aktualną pozycję menu.
- S3 (przełącznik) uruchamia tryb programowania nastaw. W pozycji PROGRAMOWANIE (w lewo, w stronę złącza) ustawia się i zmienia parametry urządzenia. W pozycji PRACA (w prawo) wyświetlacz pracuje w trybie normalnym.

Rozmieszczenie przycisków programowania w wyświetlaczach cyfrowych jest uzależnione od rodzaju stosowanej obudowy. Szczegółowy opis jest umieszczony w instrukcjach obsługi wyświetlaczy cyfrowych, w rozdziale "**Programowanie nastaw użytkownika**".

Programowanie nastaw krok po kroku:

- 1. Ustawić przełącznik S3 w pozycji PROGRAMOWANIE pojawi się komunikat "Edit".
- 2. Nacisnąć przycisk S2 pojawi się komunikat Fx1.
- 3. Ustawić potrzebną funkcję menu przyciskiem S1.
- 4. Nacisnąć przycisk S2, aby wejść do wybranej funkcji.
- 5. Ustawić odpowiednią wartość (opcję) przyciskiem S1.
- 6. Zatwierdzić wybraną nastawę przyciskiem S2 pojawi się ponownie numer funkcji.
- 7. Przeprowadzić nastawy analogicznie dla kolejnych funkcji, aż pojawi się komunikat "Edit".
- 8. Przestawić przełącznik S3 w pozycję PRACA.

Przełączenie **S3** na pozycję **PRACA** należy wykonać w trakcie wyświetlania komunikatu **"Edit"**, w przeciwnym razie wykonane nastawy nie zostaną prawidłowo zapamiętane.

Powrót do nastaw domyślnych

Jeżeli przełącznik **S3** jest w pozycji **PROGRAMOWANIE**, to w trakcie włączania zasilania należy przytrzymać przycisk **S1**. Pojawi się komunikat "**Eini**". Naciśnięcie przycisku **S2** spowoduje przywrócenie nastaw domyślnych.

Leżeli w powyższej sytuacji zostanie omyłkowo przytrzymany przycisk **S2** to wyświetli się komunikat "**Fabr"**. W takim przypadku należy zresetować urządzenie poprzez wyłączenie i ponowne włączenie zasilania.

Urządzenie dokonuje pomiaru wartości sygnału, dołączonego **do jednego z wejść**: prądowego albo napięciowego. Następnie mikrokontroler przelicza i formatuje wynik na wartość cyfrową proporcjonalną do wartości mierzonej, wyświetlaną na wyświetlaczu LED.

Tabela funkcji programowania

Nazwa	Opis	Zakres nastaw	Wartość domyślna
Fa00	Typ wejścia analogowego	I-prądowe; U-napięciowe	1
Fa01	Minimum wielkości wejściowej	LDN-4: <-999;9999> *10 ⁻² mA ; V	LDN-4: 0000 *10 ⁻² mA ; V
		LDN-5: <-9999;9999> *10 ⁻² mA ; V	LDN-5: 00000 *10 ⁻² mA ; V
Fa02	Minimum wartości wyświetlanej	LDN-4: <-999;9999>	LDN-4: 0000
		LDN-5: <-9999;9999>	LDN-5: 00000
Fa03	Maksimium wielkości wejściowej	LDN-4: <-999;9999> *10 ⁻² mA ; V	LDN-4: I:2000; U:1000*10 ⁻² mA;V
		LDN-5: <-9999;9999> *10 ⁻² mA ; V	LDN-5: I:02000;U:01000*10 ⁻² mA;V
Fa04	Maksimum wartości wyświetlanej	LDN-4: <-999;9999>	LDN-4: I:2000; U:1000
		LDN-5: <-9999;9999>	LDN-5: I:02000; U:01000
Fa05	Położenie kropki dziesiętnej	8888; 888.8; 88.88; 8.888, 8.8888	8888

Fa06	Stopień filtru cyfrowego	0(0,01s); 1(0,02s); 2(0,04s); 3(0,08s);	3(0,08s)
	(stała czasowa filtru cyfrowego)	4(0,165); 5(0,325); 6(0,645); 7(1,285); 8(2,56s); 9(5,12s)	
Fa07	Zaokrąglanie wartości wyświetlanej	do 1, do 2, do 5, do 10	do 1 (bez zaokrąglania)
Fd01	Jasność wyświetlacza	25%, 50%, 75%, 100%	100%

2.3. Komunikaty specjalne

Komunikat	Opis	Przyczyny	Obsługa
ErrF	Błąd pamięci fabrycznej. Pamięć ta przechowuje fabryczne dane kalibracyjne.	-silne zakłócenia radioelektryczne -uszkodzenie wewnętrzne	Wyłączyć zasilanie miernika na 5s i włączyć ponownie, jeśli komunikat powtórzy się skontaktować się z serwisem
InIF	Inicjowanie pamięci fabrycznej		Wyłączyć zasilanie miernika na 5s i włączyć ponownie, jeśli komunikat powtórzy się skontaktować się z serwisem
ErrU	Błąd pamięci użytkownika. Pamięć ta przechowuje wszystkie zaprogramowane przez użytkownika nastawy.	-silne zakłócenia radioelektryczne -uszkodzenie wewnętrzne	Wyłączyć zasilanie miernika na 5s i włączyć ponownie. Jeśli komunikat powtórzy się, nacisnąć przycisk ENT. Miernik powinien wczytać nastawy domyślne sygnalizując to chwilowym komunikatem InIU.
InIU	Inicjowanie pamięci użytkownika		Jeśli ten komunikat jest wyświetlany stale, skontaktować się z serwisem.
9999 (migające)	Przekroczenie górnej granicy zakresu odczytu	-nieprawidłowe nastawy miernika -nieprawidłowe podłączenie wejść pomiarowych -uszkodzenie wewnętrzne	Sprawdzić nastawy miernika, czy skalowanie odczytu wykonano poprawnie. Sprawdzić podłączenie wejść pomiarowych miernika. Sprawdzić źródło sygnału wejściowego.
-999 (migające)	Przekroczenie dolnej granicy zakresu odczytu	-nieprawidłowe nastawy miernika -nieprawidłowe podłączenie wejść pomiarowych -uszkodzenie wewnętrzne	Sprawdzić nastawy miernika, czy skalowanie odczytu wykonano poprawnie. Sprawdzić podłączenie wejść pomiarowych miernika. Sprawdzić źródło sygnału wejściowego.

3. HISTORIA MODYFIKACJI

ldn_an_dtr05r02.odt